POWERSWITCH
Reversing Contactor
BH 9253

Function Diagram

Circuit Diagrams

- According to IEC/EN 60 947-1, IEC/EN 60 947-4-2
- Switching at zero-crossing
- To reverse 3 phase asynchronuos motors up to 5.5 kW / 400 V (7.5 HP / 460 V)
- Electrical interlocking of both directions
- Temperature monitoring to protect the power semiconductors
- Measured nominal current up to 20 A
- LEDs for status indication
- Galvanic separation between control circuit and power circuit
- $45 \mathrm{~mm} ; 67.5 \mathrm{~mm} ; 112.5 \mathrm{~mm}$ width

Approvals and Markings

Function

The reversing contactor BH 9253 is used to reverse the direction of 3 -phase asynchronuos motors by switching 2 phases. An electrical interlokking disables the control of both directions at the same time. The reversing contactor has a short on and off delay time. When reversing the phases a switchover delay is guaranteed.

Temperature sensing
To protect the power semiconductors the unit incorporates temperature monitoring. When overtemperature is detected the power semiconductors swith off and an output relay as well as a red LED is activated. This state is stored. When the temperature is back to normal the semiconductors can be activated again by switching off and on the control voltage.

Indicators

yellow LED "I":
yellow LED "r":
on, when left direction active on, when right direction active red LED:

Connection Terminal
Terminal designation Signal designation A1 (I), A2 Auxiliary voltage, control anti-clockwise A3 (r), A2 Auxiliary voltage, control clockwise L1, L2, L3 Mains connection T1, T2, T3 Motor connection 11, 12, 14 Contacts output relays, active when overtemperature

Technical Data

Input

Nominal voltage
A1,A2 / A3,A2:

Voltage range:

Nominal consumption
at AC 230 V :
at DC 24 V :
Nominal frequency:
Switch on delay:
Switch off delay:
Switch-over delay t_{u} :
Permissible residual voltage:

Load Output

	unit without heat sink	with heat sink width 67.5 mm	with heat sink width 112.5 mm
Rated continuous current $\mathrm{I}_{\mathrm{e}}{ }^{1)} \quad[\mathrm{A}]$	4	12	20
Current reduction above $40{ }^{\circ} \mathrm{C} \quad\left[\mathrm{A} /{ }^{\circ} \mathrm{C}\right]$	0.1	0.2	0.2
max. motor power at $400 \mathrm{~V} \quad[\mathrm{~kW}]$	1.1	4	5.5
Nominal motor current $I_{N} \quad[A]$	2.6	8.5	11.5
max. locked rotor motor current [A]	15.6	51	69
Example for max. operat. freq. at 100 \% duty cycle, 80 \% motor load, starting time $t_{A} 2 s$, starting current $I_{A}=6 \times I_{N}$	250	210	320
Operation mode	AC53a acc. to IEC/EN 60947-4-2		

${ }^{1)}$ The rated continuous current I_{e} is the max. permissible current of the unit in continuous operation.

Note: \quad The max. permissible operating frequency of the motor can be less. See motor data!

Load voltage range:
Peak inverse voltage:
Frequency range:
Surge current 10 ms :
Semiconductor fuse:
Varistor voltage:
Cycle diagram to calculate the operating frequency

Formula for selection of unit and motor

$$
\begin{array}{lll}
I_{e} \geq \frac{1}{T}\left[I_{A} t_{A}+\right. & \left.I_{B}\left(T-t_{A}\right)\right] & \text { Device selection } \\
I_{N}^{2} \stackrel{!}{\geq} \frac{1}{T}\left[I_{A}^{2} t_{A}+\right. & \left.I_{B}^{2}\left(T-t_{A}\right)\right] & \text { Motor selection }
\end{array}
$$

I_{A} : Starting current / Blocking current
Please take into account the motor data.
Modern motors with efficiency class IE3 may have an inrush peek current of 10-12 times of the nominal motor current.

Technical Data

Monitoring Output

Contacts

BH 9253.11: 1 changeover contact
Thermal current $\mathrm{I}_{\text {th }}$:
Switching capacity
at AC 15
$\mathrm{NO}:$
NC:
Short circuit strength
max. fuse rating:

5 A

3 A / AC 230 V
IEC/EN 60 947-5-1
1 A / AC 230 V
IEC/EN 60 947-5-1
4 A gG / gL
IEC/EN 60 947-5-1

General Data

Operating mode:
Temperature range
Operation:
Storage:
Altitude:

Clearance and creepage

distances

rated impulse voltage /
pollution degree:
EMC
Surge voltages:
HF-interference:
Electrostatic discharge:
HF irradiation:
Fast transients:
Surge voltages between wires for power supply: HF wire guided: Interference suppression:
Degree of protection Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection
Load terminals:
Control terminals:

Wire fixing:
Fixing torque:
Load terminals:
Control terminals:
Mounting:

Weight:

BH 9253 with 4 A: $\quad 420 \mathrm{~g}$
BH 9253 with 12 A: $\quad 640 \mathrm{~g}$
BH 9253 with 20 A: $\quad 1040 \mathrm{~g}$

Dimensions

Width \mathbf{x} heigth x depth:

BH 9253 with 4 A:
BH 9253 with 12 A:
BH 9253 with 20 A:
$45 \times 84 \times 121 \mathrm{~mm}$
$67.5 \times 84 \times 121 \mathrm{~mm}$ $112.5 \times 84 \times 121 \mathrm{~mm}$

4 kV / 2

IEC 60 664-1
$5 \mathrm{kV} / 0.5 \mathrm{~J}$
2.5 kV

8 kV (air)
10 V / m
4 kV
1 kV
000-4-5
10 V
IEC/EN 61 000-4-6
Limit value class B
EN 55011
IP $40 \quad$ IEC/EN 60529

P 20
IEC/EN 60529
Thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm IEC/EN 60 068-2-6 frequency 10 ... 55 Hz
20 / 040 / 04
IEC/EN 60 068-1
EN 50005
$1 \times 10 \mathrm{~mm}^{2}$ solid or
$1 \times 6 \mathrm{~mm}^{2}$ stranded ferruled
$2 \times 2.5 \mathrm{~mm}^{2}$ solid or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled
DIN 46 228-1/-2/-3/-4
terminal screws M3.5; box terminals with self-lifting wire protection
1.2 Nm
0.8 Nm

DIN rail
IEC/EN 60715

UL-Data

		unit without heat sink		with heat sink width 67.5 mm		with heat sink width 112.5 mm	
Switching capacity Relay NO-contact NC-contact Short circuit current rating	[Vac] [Vac] [Arms]	$\begin{aligned} & 230 ; 3 \mathrm{~A} ; \mathrm{GP} \\ & 230 ; \frac{1 \mathrm{~A} ; \mathrm{GP}}{5000}-\underline{ } \end{aligned}$					
Ambient conditions		For usage at pollution degree 2; To be used in circuits that allows a max. curent of 5000Arms at 460 V . The device has to be fused with a fuse class RK5 25A.					
Rated continuous current $\mathrm{I}^{\text {e }}{ }^{\text {1) }}$	[A]	4		12		20	
Ambient temperature	$\left[{ }^{\circ} \mathrm{C}\right]$	40	60	40	60	40	60
max. motor power at 460 V	[HP]	1,5	0,75	5	3	7,5	5
Nominal motor current FLA (Full load current)	[A]	3,0	1,6	7,6	4,8	11	7,6
max. locked rotor motor current LRA	[A]	20	12,5	46	32	63,5	46

${ }^{1)}$ The rated continuous current I_{e} is the max. permissible current of the unit in continuous operation.

Wire connection

Load terminals
L1, L2, L3, T1, T2, T3: $\quad 60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ copper conductors only AWG 18-8 Sol Torque 0.8 Nm AWG 18-10 Str Torque 0.8 Nm

Control terminals

A1, A2, A3, 11, 12, 14 :
$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ copper conductors only AWG 20-12 Sol Torque 0.8 Nm AWG 20-14 Str Torque 0.8 Nm

Technical data that is not stated in the UL-Data, can be found in the technical data section.

Standard Type

BH 9253.11/61 AC $220 \ldots 240$ V 4 A 100 ms
Article number: 0064657

- Output:

1 changeover contact

- Nominal voltage U_{N} :

AC 220 ... 240 V

- Rated continuous current:
- Switchover delay:

4 A
100 ms

- Width:

45 mm

Ordering Example

Application Examples

230/400 V AC-Mains
AC 230 V control voltage

230/400 V AC-Mains
AC 400 V control voltage

230/400 V AC-Mains
AC/DC 24 V control voltage

ATTENTION

A1 and A3 has to be connected to the same phase. The common connection is terminal A2.
Connecting a parallel loud between A1 and A2 as well as A3 and A2 is not allowed

